Weighted Interval Scheduling
Introduction Weighted interval scheduling is a variant of the Interval scheduling problem described under chapter 16 of our CLRS book [1]. If you are not familiar with the Interval scheduling problem, I would encourage you to read that in the book [1], before proceeding with the rest of this article. Recall that in the original problem we are given a set of $n$ activities, each with associated start time $s_i$ and finish time $f_i$. Our objective is to find the maximum subset of non-overlapping activities. Moreover, the problem of finding the maximum subset of compatible activities exhibits the greedy choice property. Now with this information in mind, let’s move on to our new variant. Problem Statement Exercise 16.1-5 Consider a modification to the activity-selection problem in which each activity $a_i$ has, in addition to start and finish time, a value $v_i$. The objective is no longer to maximize the number of activities scheduled, but instead to maximize the total value...